Chapter 7 Review

Date Period

Sketch the graph of each function. Then state the domain and range and the horizontal asymptote.

1) $y = 2 \cdot 3^x - 1$

-21-.8 DODDDDDD OF R -1-.3 Range: (-1,00) or X>-1 01 Bookers

Write down the formulas you will need to know.

2) a) Exponential Growth and Decay:

 $A(t) = \alpha(1 \pm r)^{t}$

b) Compound Interest (not continuous): $A(t) = P(1+f)^{n+1}$

c) Continuous Compound Interest:

A(t)=Pert

Solve

3) You invest \$3000 into a bank account that earns 2% interest compounded monthly.

A) How much is in the account after 18 months?
$$A \left(\frac{18}{12} \right) = 3000 \left(1 + \frac{02}{12} \right)$$

B) How much will you earn in interest in 12 years?
$$A(12) = 3000(1 + \frac{02}{12})^{12 \cdot 12} = 3812.99$$

C) After how many years will you double your money? Round to the nearest hundredth.

 $0000 = 3000 \left(1 + \frac{02}{12}\right)^{12}$ $2 = (1 + \frac{02}{12})^{12}t$ $\log 2 = 12t \log (1 + \frac{02}{17}) =$

- 4) Your bank account earns 4% interest compounded continuously.
 - a) If you invest \$2000, what will be your balance after 4 years?

b) If you want to have \$5000 in the account in 10 years, how much would you have to invest today?

5) A car depreciates 12% each year. If you purchase a car for \$21,500, how much will it be worth after 3 years?

- 6) You purchase an antique vase worth \$100. It's value is expected to increase at 2% each year.
 - A) After how many years will the vase double in value?

A) After how many years will the vase double in value:
$$200 = 100 (1+.02)^{\pm}$$

$$2 = 1.02^{\pm}$$
B) What will your vase be worth after 30 months?
$$A(\frac{30}{72}) = 100 (1+.02)^{\frac{30}{12}}$$

Rewrite each equation in logarithmic form.

7)
$$11^2 = 121$$
 $|00|$ $|2| = 2$

8)
$$7^{-3} = \frac{1}{343}$$
 $109 - 343 = -3$

10g2= ±10g1.02 1±≈35 years

Rewrite each equation in exponential form.

9)
$$\log_{15} \frac{1}{225} = -2$$

$$|5|^{-2} = \frac{1}{725}$$

10)
$$\log_{19} 361 = 2$$
 $19^2 = 3(0)$

What is the y-intercept and the horizontal asymptote of the following functions?

11)
$$y = -2 \cdot 3^{x+5}$$

Y-intercept?
$$y = -480$$

12)
$$y = 5 \cdot 4^{x-3} - 7$$

Evaluate each to the nearest thousandth.

Evaluate each expression.

15)
$$\log_3 27$$

1.77

14) log₃ 7

Condense each expression to a single logarithm.

17)
$$\log_7 x + \log_7 y + 4\log_7 z$$

$$\log_7 \left(X \vee Z^H \right)$$

Expand each logarithm.

19)
$$\ln \frac{7^2}{x^3}$$
 $2 \ln 7 - 3 \ln x$

Solve each equation.

21)
$$64^{2-3x} = 16$$

 $(2-3x) \log 64 = \log 16$
 $x = \frac{4}{9}$

18) $2\log_3 11 - 4\log_3 6$ $100_{3}\left(\frac{11^{2}}{10^{4}}\right) = 100_{3}\left(\frac{121}{1290}\right)$

20)
$$\log_5 (x^4 \cdot y)^2$$

8 $\log_5 X + 2 \log_5 Y$

21)
$$64^{-1} = 16$$

$$2-3 \times) \log 64 = \log 16$$

$$2^{-3n} = 32$$

$$-3n \cdot \log 2 = 10932$$
Solve each equation. Round your answers to the nearest ten-thousandth.

23) $20^{-n} = 5$ $-n\log 20 = \log 5$ na - 5372

Solve each equation.

25)
$$\log_{5}(x-6) - \log_{5}x = 1$$

$$|095(\frac{X-6}{X}) = |$$

$$x \cdot 5' = \frac{X-6}{X} \cdot x \qquad 5X = X-6$$

$$27) e^{x-4} - 4 = 41 \qquad X = -6/4$$

$$e^{X-4} = 45$$

$$(X-4)|Ae = |A|5$$

$$Y-4 = |A|5$$

24)
$$7 \cdot 7^{p+4} = 51$$

 $7^{p+4} = 51$
 $7^{p+4} = 51$
 $(p+4) \log 7 = \log(5\frac{1}{7})$
 $p \approx -2.9794$
26) $\ln -2x + \ln 10 = 2$

$$\ln (-20x)=2$$
 $\ell^2=-20x$
 $[x^2-3695]$

28)
$$10\log_5 x = 130$$
 $100 = 100$
 $109_5 X = 13$

$$5^{13} = X$$

$$X = 17.20,703,125$$